Zero-shot Unsupervised Transfer Instance Segmentation

Contributions

- We introduce a challenging task, namely, zero-shot unsupervised transfer instance segmentation, which aims to segment object instances without human supervision or access to a target data distribution.
- We propose a simple yet effective framework, termed ZUTIS, that goes beyond prior USSLIP approaches, and enables to concurrently perform instance segmentation in addition to semantic segmentation.
- We show that ZUTIS performs favourably against state-of-the-art methods on standard unsupervised segmentation benchmarks (e.g., COCO, ImageNet-S) by a large margin in both zero-shot transfer and unsupervised domain adaptation settings.

Qualitative examples

Sample visualisations of ZUTIS on COCO-20K and VOC2012.

Overview

Step 0. (Before training) We generate pseudo-masks by applying an unsupervised saliency detector (i.e., SelfMask) to images curated with CLIP for a set of categories of interest. For simplicity, this step is omitted in the figure.

Step 1. (Training) We feed an image to a CLIP image encoder whose resulting image features are given to a feed-forward network (FFN) followed by a transformer decoder to produce mask proposals which are updated through a mask loss (top). At the same time, the CLIP image features are projected into a text embedding space in which semantic predictions are made via a dot-product between the projected image features and frozen text features for a set of categories (bottom left). The semantic predictions are guided by the standard cross-entropy loss.

Step 2. (Inference) We predict instance segmentation masks using both the objectness score and the classification score of a mask proposal, after which we apply non-maximum suppression (bottom right). For semantic segmentation, we follow the same process as during the training step, computing a dot-product between the projected image features and the frozen text features corresponding to a set of categories.

Gyungin Shin^{1, 2} **Samuel Albanie**² Weidi Xie^{1, 3} ¹Visual Geometry Group, University of Oxford, UK ²Cambridge Applied Machine Learning Lab, University of Cambridge, UK ³Cooperative Medianet Innovation Center, Shanghai Jiao Tong University, China

model	backbone	AP	AP ₅₀	AP ₇₅
unsupervised methods w/o language-image pretraining				
DINO	ViT-S/16	0.7	2.0	0.4
LOST	ViT-S/16	1.2	3.3	0.6
MaskDistill	ViT-S/16	1.7	4.1	1.4
MaskDistill [†]	RN50-C4	3.5	7.7	2.9
unsupervised methods w/ language-image pretraining				
MaskCLIP	ViT-B/32	0.3	0.8	0.2
ZUTIS (Ours)	ViT-B/32	3.4	8.0	2.6
MaskCLIP	ViT-B/16	1.3	3.4	0.8
ZUTIS (Ours)	ViT-B/16	5.7	11.0	5.4

Comparison to previous unsupervised instance segmentation methods on COCO-20K. †Mask R-CNN trained with pseudo-masks from MaskDistill.

model	arch.	COCO	CoCA	
initialised with different encoder features				
ReCo [†]	DeiT-S/16 & RN50x16	23.8	28.8	
NamedMask [‡]	RN50 & DLv3+	28.4	27.3	
initialised with CLIP encoder features				
MaskCLIP	ViT-B/16	20.6	20.2	
ZUTIS (Ours)	ViT-B/16	32.8	32.7	

Comparison to previous unsupervised semantic segmentation methods leveraging image-language pretraining on COCO and CoCA in terms of mIoU (%). †Initialised with supervised Stylised-ImageNet pretraining. Initialised with DINO.

Conclusion

Main results

In this work, we introduced ZUTIS, the first framework for joint instance segmentation and semantic segmentation in a zero-shot transfer setting that requires no pixel-level or instance-level annotation. We employ a query-based transformer architecture for instance segmentation and train it on pseudo-labels generated from applying an unsupervised saliency detector to images retrieved by CLIP. Through careful experiments, we demonstrated the effectiveness of ZUTIS across both instance segmentation and semantic segmentation tasks.

model	arch.	# params	mloU		
unsupervised methods w/o language-image pretraining					
PASSp	RN50	N50 25.6			
PASS₅	RN50	RN50 25.6			
unsupervised methods w/ language-image pretraining					
ReCo [†]	DeiT-S/16 & RN50x16	170.4	10.3		
NamedMask [‡]	RN50 & DLv3+	26.6	22.9		
ZUTIS (Ours)	ViT-B/32	87.8	27.5		
ZUTIS (Ours)	ViT-B/16	86.2 37.			
omparison to existing unsupervised methods on the ImageNet-S					

Comparison to existing unsupervised methods on the imageiver-o benchmark with 919 object categories in the unsupervised domain adaptation setting.

category-specific label	CUB-200-2011
×	72.5
\checkmark	72.6

High-level to low-level zero-shot transfer on the CUB-200-2011 benchmark. When given a fine-grained bird breed, ZUTIS can segment the corresponding bird regions as good as when it is given a high-level category "bird."

model	AP	AP ₅₀	AP ₇₅
MaskCLIP	0.7	2.0	0.4
ZUTIS (Ours)	3.3	7.2	2.8

on COCO-20K

Zero-shot unsupervised instance segmentation for 15 unseen categories