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We introduce a challenging task, namely, zero-shot unsupervised transfer
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We propose a simple yet effective framework, termed ZUTIS, that goes PASS RN50 25 6 6.6
beyond prior USSLIP approaches, and enables to concurrently perform DINO ViT-S/16 0.7 2.0 04 B ' '
instance segmentation in addition to semantic segmentation.
We show that ZUTIS performs favourably against state-of-the-art methods LOST ViT-S/16 1.2 3.3 0.6 PASSs RNS50 25.6 11.0
on standard unsupervised segmentation benchmarks (e.g., COCO, o _ ] ) -
ImageNet-S) by a large margin in both zero-shot transfer and unsupervised i e MaskDistill ViT-S/16 1.7 41 1.4 unsupervised methods w/ language-image pretraining
domain adaptation settings. Sample visualisations of ZUTIS on COCO- 20K and VOC2012. .
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Step 0. (Before training) We generate pseudo-masks by applying an unsupervised saliency detector (i.e., SelfMask) to images curated with CLIP for a set of MaskCLIP ViT-B/16 206 20.2
categories of interest. For simplicity, this step is omitted in the figure. _ model AP APso AP75
ZUTIS (Ours) ViT-B/16 32.8 32.7
Step 1. (Training) We feed an image to a CLIP image encoder whose resulting image features are given to a feed-forward network (FFN) followed by a transformer MaskCLIP 0.7 2.0 0.4
decoder to produce mask proposals which are updated through a mask loss (top). At the same time, the CLIP image features are projected into a text embedding Comparison to previous unsupervised semantic segmentation methods
space in which semantic predictions are made via a dot-product between the projected image features and frozen text features for a set of categories (bottom left). leveraging image-language pretraining on COCO and CoCA in terms of ZUTIS (Ours) 3.3 7.2 2.8
The semantic predictions are guided by the standard cross-entropy loss. o . : . . -
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Step 2. (Inference) We predict instance segmentation masks using both the objectness score and the classification score of a mask proposal, after which we apply
non-maximum suppression (bottom right). For semantic segmentation, we follow the same process as during the training step, computing a dot-product between

the projected image features and the frozen text features corresponding to a set of categories. )
¢ Conclusion

JUNE 18-22, 2023 In this work, we introduced ZUTIS, the first framework for joint instance segmentation and semantic segmentation in a zero-shot transfer setting that requires no
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applying an unsupervised saliency detector to images retrieved by CLIP. Through careful experiments, we demonstrated the effectiveness of ZUTIS across both
instance segmentation and semantic segmentation tasks.




