NamedMask: Distilling Segmenters from Complementary Foundation Models

Overview

Given an image archive for a concept retrieved by CLIP (left), we generate masks using an unsupervised saliency detector (middle). We refine the segmentations of each category by a class expert trained with the constructed image-mask pairs (right). Using the retrieved images and their refined segments, we train NamedMask to generate a segmenter capable of predicting a set of pre-defined categories (omitted in the figure for simplicity).

Contributions

- We propose NamedMask, a framework for segmenting and naming objects without pixel-level annotation by distilling the complementary strengths of CLIP and DINO:
- We provide extensive experiments to demonstrate the improvements brought by NamedMask over prior semantic segmentation approaches that also make use of language-image pretraining.

Task formulation and terminology

We consider a setting for segmentation that we term **Segmentation** Leveraging Only Weak Pretraining (SLOWP). SLOWP methods make no use of pixel-level annotation and are characterised by pretraining on data that is either:

- (i) **Zero-shot transfer** assumes no knowledge of the target distribution (images or category names) during training;
- (ii) Name-only transfer assumes access (during training) to the list of category names that are to be used for the target segmentation task, but does not assume access to any images from the target distribution;
- (iii) **Name-and-image transfer** assumes access (during training) to the list of category names in the target segmentation task and access to unlabelled images from the target distribution.

Ablation studies

Effect of category experts on mask quality. Category experts produce better quality segmentation masks than the baseline unsupervised saliency detector. We report segmentation performance for each method on Pascal VOC2012. The performance metric is (class-wise) IoU (%).

Gyungin Shin^{1, 3} Weidi Xie^{1, 2} Samuel Albanie³ ¹Visual Geometry Group, University of Oxford, UK ²Cooperative Medianet Innovation Center, Shanghai Jiao Tong University, China ³Cambridge Applied Machine Learning Lab, University of Cambridge, UK

Effect of archive size.

Larger image archives produce better segmenters "archive size" denotes the number of images retrieved by CLIP to curate an image archive for each category.

Sample visualisations of NamedMask, a segmenter distilled from the complementary capabilities of CLIP and DINO.

model	# experts	avg. loU
SelfMask	-	62.7
	1	63.3
category experts	30	64.1
	60	64.0
	90	63.9

Effect of grouping semantically relevant categories for category expert training on the ImageNet-S₃₀₀ validation split.

model	copy-paste	single-obj.	multi-obj.	all
SelfMask + CLIP	-	63.3	42.1	50.4
NamedMask (Ours)	×	67.0	50.5	56.6
NamedMask (Ours)	\checkmark	68.0	53.6	58.7

Copy-paste augmentation helps the model to segment multiple objects in an image. The performance is measured in mIoU (%).

Conclusion

In this work, we introduced NamedMask, a method for semantic segmentation that is trained by distilling the complementary capabilities of two foundation models, CLIP and DINO, into a single segmenter. By doing so, NamedMask achieves impressive segmentation quality across both single-object and multi-object images without pixel-level annotation. We demonstrate the effectiveness of NamedMask by comparing to prior methods on several benchmarks, where we observe that NamedMask achieves a significant boost in segmentation performance.

Main results

model	transfer type	COCO	CoCA	Cityscapesobj
MaskCLIP	zero-shot	5.3	3.1	6.1
ReCo [†]	name-only	17.1	16.9	14.1
NamedMask	name-only	28.4	27.3	18.2

Comparison to previous segmentation leveraging only weak pre-training (SLOWP) methods on the COCO, CoCA, and Cityscapes_{obj} benchmarks in terms of mIoU. [†]initialises the backbone with Stylized-ImageNet pre-training.

model	transfer type	backbone	mloU		
unsupervised semantic segmentation methods					
Inst. Disc.	-	ResNet50	4.3		
МоСо	-	ResNet50	3.7		
InfoMin	-	ResNet50	4.4		
SwAV	-	ResNet50	4.4		
MaskCon.	-	ResNet50 ⁺	35.0		
MaskDist.	-	ResNet50 ⁺	45.8		
segmentation leveraging only weak pretraining methods					
MaskCLIP*	zero-shot	ResNet50	29.1		
ReCo*‡	name-only	DeiT-S/16	34.2		
NamedMask	name-only	ResNet50	59.2		
Comparison to existing unsupervised compartie commentation and					

Comparison to existing unsupervised semantic segmentation and segmentation leveraging only weak pretraining methods on the PASCAL VOC2012 validation set. *Re-implemented and adapted by us to predict a background class. †uses dilated ResNet. ‡initialises the backbone with Stylized-ImageNet pretraining.

